WILDS – Distribution shifts – iwildcam

Vijaya Lakshmi Kuruba Saif Kurdi-Teylouni Chaitanya Kothapalli

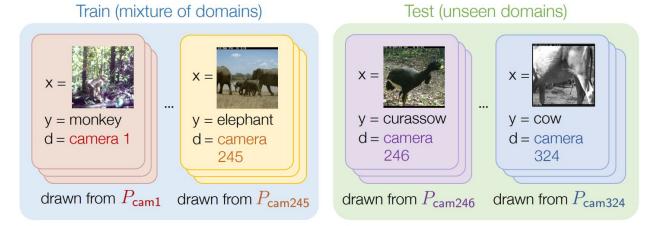
Agenda:

- Problem Definition & Motivation
- Dataset
- Domain generalisation algorithms
- Data augment techniques
- Model architecture
- Results
- Results Interpretation
- Future works

Problem definition :

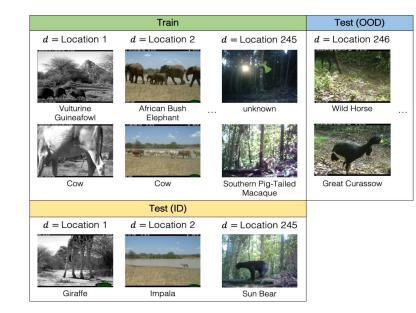
General assumption in Machine learning : **Train Data Distribution = Test Data Distribution**

Distribution shifts can cause models to fail : **Train Data Distribution # Test Data Distribution**



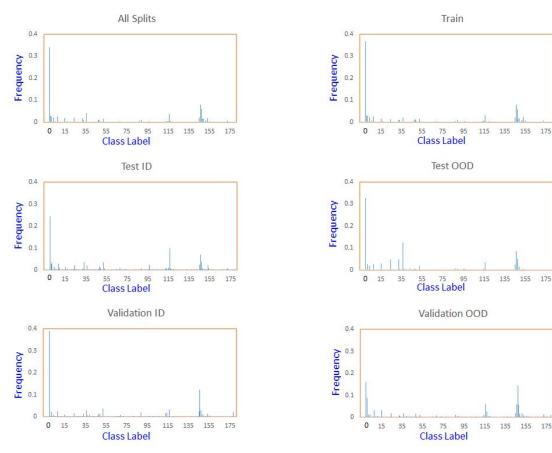
Test - Images from the same location (High accuracy)

Test - Images from other location (Low accuracy)


Animal Classification in Wildlife monitoring & conservation :

- ML models are used to process, understand and monitor wildlife biodiversity loss with data from deployed camera traps.
- Typical ML models would generalise poorly to new camera Trap deployments due to variations in illumination, camera angle, background, vegetation, color, and relative animal frequencies.
- This distribution shift is a example of domain generalisation.

Dataset:


- Dataset iWildCam2020
- 00D Measured performance on default wild splits
- ID Measured without distribution shift on held out dataset

* In-Distribution (ID), Out-of-Distribution (OOD)

	Tra	ain	Validati	on (OOD)	Test	Test (OOD) Va		Validation (ID)		Test (ID)
Dataset	N_Img	N_traps	N_Img	N_traps	N_Img	N_traps	N_lmg	N_traps	N_Img	N_traps
Full	129,809	243	14,961	32	42,791	48	7,314	Same traps as training set but on different days from train and	8,514	Same traps as training set but on different days from
Partial	51,924	238	5,984	32	17,116	48	2,926	test (ID) images	3,262	train and val (ID) images

Label distribution for each iWildCam2020 split experimental data set

Approximately 35% of the total number of images are empty - Class 0 •

Metrics:

- Highly Imbalanced dataset
- Accuracy is not a good metric to weigh models with unbalanced datasets.
- Macro F1 score to better capture model performance on rare species.

Project Setup & Approach :

Phase 1: Experiments with Full dataset

- Reproduce baseline results
- Use Data augmentation techniques

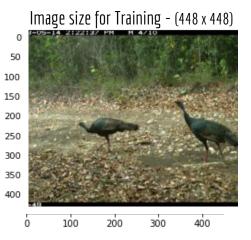
Phase 2 : Experiments with Partial dataset

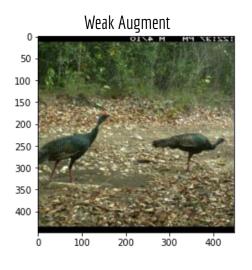
- Create new baseline results
- Use Data augmentation techniques
- Use different Model Architecture
- Comparison and Interpretation

• 182 classes - full data set vs 169 classes in partial dataset. Same number of camera traps are retained.

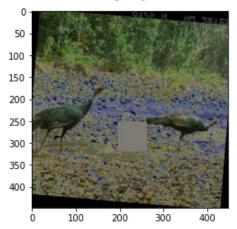
Domain Generalisation Algorithms :

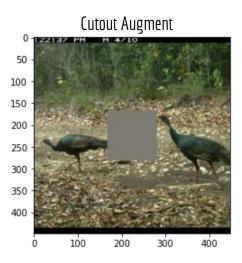
• ERM - Minimizes the average loss across dataset

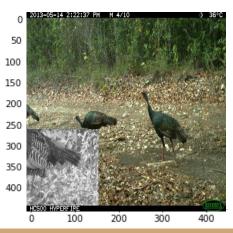

Domain Generalisation algorithms : ERM + Penalty to capture invariance , Uses Domain annotations during training


- CORAL -Penalizes differences in the means and covariances of the feature distributions (i.e., the distribution of last layer activations in a neural network) for each domain.
- IRM To learn invariances across environments, find a data representation such that the optimal classifier on top of that representation matches for all environments.

Data Augmentation :


Original Image (W x 448)

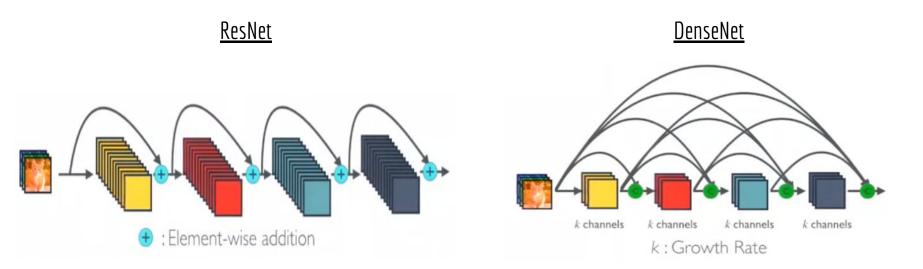


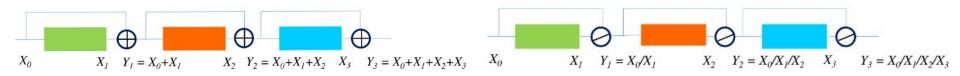


Strong Augment

Cut Mix Augment

Model Architecture :


Provides the working parameters—such as the number, size, and type of layers in a neural network.


- ResNet
 - Convolutional neural network that utilises "identity shortcut connection" that skips one or more layers.
 - Tackles vanishing gradient issue arising with layer stacking.
 - Allows for very deep architectures, over a hundred layers.

• DenseNet

- Convolutional neural network that utilises dense connections between layers, through Dense Blocks, where all layers (with matching feature-map sizes) are connected directly with each other
- Concatenation is used. Each layer is receiving a "collective knowledge" from all preceding layers.
- Since each layer receives feature maps from all preceding layers, network can be thinner and compact, i.e. number of channels can be fewer

ResNet vs. DenseNet:

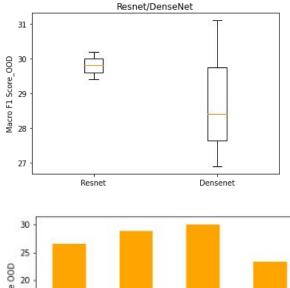
Results

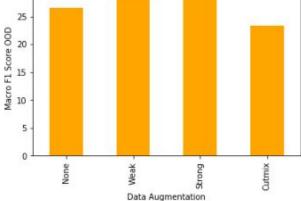
Baseline Experiment Results (Phase 1):

Baseline Vs Reproduced Results

Phase	1 -	Results
-------	-----	---------

Model	Algorithm	Augmentation Method	Test ID Macro F1	Test OOD Macro F1
	ERM	Reproduced results	42.2	33.5
	ERIVI	Published Results	47.0 (1.4)	31.0 (1.3)
	IRM	Reproduced results	15.1	10.9
ResNet 50		Published Results	22.4 (7.7)	15.1(4.9)
		Reproduced results	42.8	28.8
	CORAL	Published Results	43.5 (3.5)	32.8 (0.1)


Model	Algorithm	Augmentation Method	Test ID Macro F1	Test ID Avg Acc	Test OOD Macro F1	Test OOD Avg Acc
		Strong	46.0	77.4	30.1	73.7
		Weak	47.3	76.9	32.6	74.1
	ERM	Cutout	41.5	74.8	29.9	68.2
		Cutmix	43.5	71.7	26.8	75.2
		No Augmentation	42.2	75.8	33.5	75.5
	IRM	Weak	20.3	59.0	12.5	53.3
ResNet 50		Cutout	22.9	59.1	16.6	63.6
Veshel DU		Cutmix	33.6	70.3	22.3	64.1
		No Augmentation	15.1	50.8	10.9	52.9
		Strong	44.5	74.9	34.9	74.9
		Weak	44.6	75.0	33.2	73.3
	CORAL	Cutout	46.6	74.7	35.1	70.4
		Cutmix	34.0	65.8	28.1	71.8
		No Augmentation	42.8	73.6	28.8	72.5


Selection criterion for further analysis :

	Model: ResNet 50 Agorithm: ERM Augmentation: None							
Experiment	Experiment Target Image Dataset Run Time Test ID Test ID Avg Test OOD Test OOD Resolution (%) (Hrs) Macro F1 Acc Macro F1 Avg Acc							
Baseline	(448, 448)	100	15.5	42.2	75.8	33.5	75.5	
Exp 1	Exp 1 (448, 448) 40 4.0 43.9 75.6 27.8 66.4							
Exp 2	(224, 224)	100	4.0	41.7	73.2	25.5	59.5	
Exp 3	(224, 224)	40	2.25	<mark>36.0</mark>	73.0	22.1	67.6	

Experiments with partial dataset (Phase 2):

Model	Algorithm	Augmentation Method	Test ID Macro F1	Test ID Avg Acc	Test OOD Macro F1	Test OOD Avg Acc
		No Augmentation	44.94 (1.06)	76.18 (0.42)	26.63 (1.72)	70.23 (1.79)
	ERM	Weak	47.50 (1.37)	77.43 (1.40)	29.80 (0.40)	72.83 (5.06)
	ERIVI	Strong	43.60 (2.39)	76.93 (0.76)	29.37 (0.50)	69.93 (3.45)
ResNet		Cutmix	36.16 (1.43)	70.70 (0.92)	25.83 (0.83)	70.60 (2.83)
Resiver	CORAL	No Augmentation	38.21 (1.89)	70.76 (2.25)	28.04 (0.63)	73.72 (3.76)
		Weak	39.10 (3.70)	72.76 (1.89)	29.01 (1.08)	69.84 (3.67)
		Strong	37.67 (3.30)	71.21 (4.01)	26.10 (1.50)	70.18 (0.80)
		Cutmix	22.93 (1.03)	57.30 (1.74)	19.03 (0.59)	66.26 (3.07)
		No Augmentation	42.90 (0.36)	75.70 (1.30)	26.58 (2.42)	72.97 (3.73)
	ERM	Weak	42.73 (1.80)	77.33 (0.55)	28.80 (2.13)	73.80 (2.11)
		Strong	39.73 (2.48)	77.50 (0.17)	29.98 (1.67)	75.87 (2.13)
DenseNet		Cutmix	35.83 (1.46)	75.51 (4.52)	23.42 (0.61)	73.34 (1.56)
		No Augmentation	37.03 (1.36)	71.24 (2.49)	25.78 (1.67)	71.63 (1.64)
	CORAL	Weak	37.16 (1.42)	73.35 (1.39)	26.73 (0.89)	69.59 (0.55)
		Strong	32.53 (2.34)	68.00 (2.34)	24.72 (2.37)	74.44 (0.60)
		Cutmix	21.56 (0.30)	53.86 (4.27)	16.63 (0.16)	66.30 (0.92)

Results Interpretation

Observations on species classification with Data augmentation

6	Without Augmentation						
Class	precision	recall	f1-score	support			
0	0.920	0.928	0.924	5589			
2	0.617	0.550	0.581	433			
6	0.200	0.125	0.154	24			
8	0.544	0.690	0.608	464			
12	0.000	0.000	0.000	7			
17	0.032	0.096	0.048	52			
20	1.000	0.075	0.140	53			
23	0.000	0.000	0.000	52			
27	0.667	0.154	0.250	13			
33	0.833	0.672	0.744	67			
36	0.907	0.271	0.418	2122			

	With Augmentation						
Class	precision	recall	f1-score	support			
0	0.946	0.939	0.942	5589			
2	0.708	0.633	0.668	433			
6	0.286	0.583	0.384	24			
8	0.571	0.744	0.646	464			
12	0.182	0.286	0.222	7			
17	0.643	0.173	0.273	52			
20	0.600	0.170	0.265	53			
23	0.556	0.096	0.164	52			
27	0.500	0.385	0.435	13			
33	0.808	0.881	0.843	67			
36	0.873	0.806	0.838	2122			

Observations on species classification with Data augmentation

Image Class	Image Category	Without Augmentation	With Augmentation
24	bos taurus	80.3	36.3
36	aepyceros melampus	31.4	87.5

Misclassification scenarios

Existence of small animals in dark settings

Species represented partially

Existence of birds in bushy background

Existence of a similar non rare class species in the dataset

Incorrect labelling

Multiple species existing in same image

Scenarios of empty images misclassification

Great Tinamou wrongly detected in Empty image

Bushnel M CTNNP39 77 44'F6'C

06-08-2014 18:29:36

Common Warthog wrongly detected in Empty image

Antelope wrongly detected in Empty image

Future work:

- Transformer based architecture (visual transformers)
- 2 step classification : Empty and Non empty images + Classification on Non empty Images
- Mega Detector Pretrained model by Microsoft to find animals in picture that outputs bounding boxes over the animals. Crop these boxes and classify them